

American Institute of Aeronautics and Astronautics

1

Discrete Data Transfer Technique for Fluid–Structure
Interaction

Jamshid A. Samareh*
NASA Langley Research Center, Hampton, VA 23681

This paper presents a general three-dimensional algorithm for data transfer between
dissimilar meshes. The algorithm is suitable for applications of fluid-structure interaction
and other high-fidelity multidisciplinary analysis and optimization. Because the algorithm is
independent of the mesh topology, we can treat structured and unstructured meshes in the
same manner. The algorithm is fast and accurate for transfer of scalar or vector fields
between dissimilar surface meshes. The algorithm is also applicable for the integration of a
scalar field (e.g., coefficients of pressure) on one mesh and injection of the resulting vectors
(e.g., force vectors) onto another mesh. The author has implemented the algorithm in a C++
computer code. This paper contains a complete formulation of the algorithm with a few
selected results.

Nomenclature
A = area
B = finite element basis functions
d = distance
f = load vectors
F = data matrix
K = stiffness matrix
L = length of a 2-sided element
M = moments
n = surface unit normal vector
p = projection of CFD mesh points onto CSM mesh
P = pressure loads
r = element coordinates
R = mesh coordinates
T = transformation matrix
U = virtual work
V = design variables
x, y, z = coordinates
δ = deflection vectors
ξ1, ξ2 = element parametric coordinates

Subscripts
e = element
F = fluid
i, j, k = source point number, element number, and target point number, respectively
S = structures
T = total
1, 2 = mesh numbers

Superscripts
S, T = source and target meshes

* Senior Research Engineer, Vehicle Analysis Branch, MS 451, Associate Fellow.

American Institute of Aeronautics and Astronautics

2

I. Introduction
curate data transfer among various disciplines is a key ingredient in any high-fidelity multidisciplinary analysis
and optimization. For example, the strong coupling between the external flow and the aircraft structure can
prompt physically important phenomena. Correct modeling of these complex aeroelastic phenomena requires

an accurate coupling of computational structural mechanics (CSM) and computational fluid dynamics (CFD) for a
flexible structure. In a multidisciplinary environment, various disciplines share the same geometry, but the models
(e.g., CSM and CFD) have dissimilar meshes. In addition, the data from one discipline must be available to all other
disciplines. The data may be scalar (e.g., pressure and temperature), vector (e.g., deflection and heat transfer), or
integrated quantities (e.g., aerodynamic and thermal loads). The data transfer process may be subjected to additional
constraints, such as conservation of forces, moments, and energy.

Samareh and Bhatia1 provide a review of existing data transfer algorithms, which range from earlier algorithms
like FLEXSTAB2 at Boeing in early seventies to Dassault Aviation work3-4 in the eighties. In recent years, various
researchers have examined the data transfer process primarily for aeroelastic analysis. Discrepancies and
dissimilarities in the geometry and the mesh models are two potential sources of error in the data transfer process.
One source of error may arise if the models have dissimilar levels of geometry details. For example, a CFD mesh
generally resembles the true outer model line geometry of the aircraft; the CFD mesh includes details such as
pylons, nacelles, flaps, and slats. However, a CSM mesh generally represents only the major structural components,
such as the wing box. Flaps and slats are represented either by a few simple beam elements or are completely
excluded. Tzong et al.5 and Kapania and Bhardwaj6 present data transfer algorithms that are based on the finite
element (FE) method, in which the virtual work is used to transfer the aerodynamic pressures onto a CSM mesh.
Then, the displacements are transferred back to the CFD mesh through the reciprocal theorem. Kapania and
Bhardwaj6 were successful in using a simplified version of this algorithm for several wings.

Brown7 adds virtual elements in the CSM model to cover the discrepancies in the geometry definition between
CSM and CFD models. These virtual elements add neither stiffness nor mass. As pointed out by Cebral and Löhner8,
the generation of virtual elements is an unnecessary complication, particularly for complex geometries.

Smith, Hodges, and Cesnik9 provide excellent overviews of six data transfer methods between CFD and CSM
disciplines. These methods are infinite-plate spline (IPS), multiquadric biharmonic (MQ), nonuniform B-spline
(NUBS), thin-plate spline (TPS), finite-plate spline (FPS), and inverse isoparametric mapping (IIM). The IPS
method is the basis for the popular surface splines method, which is available in most commercial aeroelastic
analysis tools (e.g., MSC NASTRAN†). The IPS method interpolates a function of two independent variables and
requires noncoincident mesh points. Smith, Hodges, and Cesnik9 recommend further study of IIM and NUBS. They
indicate that IIM shows great promise for two-dimensional applications and needs extension to three dimensions.

Clutter10 and Send11 extend NUBS to three dimensions. One major limitation with most NUBS implementation
is that the input data must be a structured (regular) mesh. This limitation forces the data, at best, to be approximated
in most realistic cases. Samareh12 presents a method that removes this limitation, and the method uses a non-uniform
rational B-spline (NURBS) representation for data transfer among various disciplines. This method is a general
three-dimensional, least-squares representation, which removes the requirement for the structured input mesh and
can handle multiple coincident points. Another advantage of this method is that the users have control over the
tradeoff between smoothness and accuracy.

Murti and Valliappan13 present an IIM algorithm for a two-dimensional model, and Pidaparti14 further refines the
IIM algorithm. The refined algorithm uses the FE shape functions to interpolate the coordinates, pressure, and
displacement vectors. Because the FE shape functions satisfy a positivity constraint, the process will maintain local
extrema. Maman and Farhat15 and Farhat, Lesoinne, and LeTallec16 outline a consistent interpolation algorithm
similar to IIM for transferring information between two dissimilar meshes. The local interpolation is computed by
projecting one mesh onto another. Cebral and Löhner17 present a variation of IIM that guarantees conservation of
forces. They use a Galerkin method to solve for the pressure on the CSM mesh. They also use an adaptive Gaussian
integration technique to improve the accuracy. Farhat, Lesoinne, and LeTallec16 also present a variation of their
original algorithm that guarantees conservation of forces. We used a variation of this algorithm for our current study.

The accuracy of the data transfer process for integrated quantities (e.g., forces, moments, and energy) depends on
the consistency of data transfer as well as other constraints, such as conservation of forces and moments. For
example, the following equation defines consistent load vectors for the structural analysis on a CSM mesh as:

† MSC NASTRAN is a registered trademark of the McNeal-Schwendler Corporation

A

American Institute of Aeronautics and Astronautics

3

 dAnPBf
A

T
e }{}{}{ ∫= (1)

where
ef is the elemental load vector, B is the FE shape function, P is the nodal pressure, n is the unit surface

normal on the CSM mesh, and dA is the infinitesimal surface element on the CSM mesh. Because the above
equation uses the same shape functions as used to calculate the element stiffness matrix, the equation guarantees a
consistent loading.18 There are several possible problems with using the above equation. First, the aerodynamic load
may have a large variation within a single CSM element, such that the shape functions are inadequate to capture the
load variation across the element. Second, the FE shape functions may be unavailable for some commercial CSM
codes. Third, the local normal vectors for a CSM mesh are generally different to a CFD mesh, primarily due to
differences in discretization. In its present form, Eq. (1) does not guarantee conservation of forces and moments. An
alternative approach to Eq. (1) is to integrate the loads on the CFD mesh and inject the resulting force vectors to the
CSM mesh. This approach guarantees conservation of forces and moments. One limitation of this method is that the
CFD mesh must have equal or higher resolution than the CSM mesh. Refining the CFD surface mesh (e.g., splitting
quadrilateral into four elements) and interpolating the corresponding data will alleviate this problem without refining
the entire field mesh. The next section presents a general algorithm, followed by some selected results and summary.

II. Data Transfer Algorithm
We can represent the data transfer between two dissimilar meshes in a matrix form as:

 }]{[}{ 1212 FTF = (2)

where matrix {F1} represents the input data on the source mesh, matrix {F2} represents the output data on the target
mesh, and matrix [T21] is a transformation matrix. For example, {F1} could represent the aerodynamic loads defined
on a CFD mesh and transferred to a CSM mesh as {F2}. Generally, the transformation matrices are large and sparse.
If the transformation matrix [T21] is independent of the shape changes, then we can calculate [T21] once and use it as
long as there is no change in the mesh connectivity.

The use of a transformation matrix simplifies the integrated analyses such as aeroelastic calculation. The
aeroelastic calculation has four distinct steps: a) calculate aerodynamic loads on the CFD mesh (FF), b) transfer
aerodynamic loads to the CSM mesh (FS), c) calculate the aeroelastic deflections on the CSM mesh (δS), and d)
transfer the aeroelastic deflection to the CFD mesh (δF) to recalculate and update the aerodynamic loads. Equation
(3) summaries this process as:

{ } { }

{ } []{ }
[]{ } { }

{ } []{ } (d) ,
(c) ,
(b) ,
(a) step ,)(

SF

SS

FFF

δδ

δ

δ

FS

FSFS

F

T
FK

FTF
RFF

=

=

=

+=
 (3)

where FF is the aerodynamic load vector on the CFD mesh, FR are coordinates of the CFD mesh, Fδ are aeroelastic
deflections on the CFD mesh,

SF is the aerodynamic load vector on the CSM mesh,
Sδ are the aeroelastic deflections

on the CSM mesh, and [T] is the transformation matrix. Combining Eqs. 3a with 3d and 3b with 3c results in,

 { } []{ }(){ }
[]{ } []{ }FS

SFF

FTK
TRFF

SF

FSF

=

+=

δ

δ (4)

For a linear structure without rigid body degrees-of-freedom, we can further simplify Eq. (4) to

 { } [][] []{ }(){ }FFF FTKTRFF SFFSF
1−+= (5)

We can extend this formulation to applications with rigid body degrees-of-freedom. Through Eq. 5, CFD codes can
be decoupled from a linear CSM code.

American Institute of Aeronautics and Astronautics

4

If the transformation matrix is independent of the shape changes, then the formulation is especially appealing for

sensitivity analysis used in a gradient-based optimization. For example, we can use the following equation to
transfer the CFD load sensitivity to a CSM mesh as,

 { } [] { }
V
FT

V
F

S ∂
∂

=
∂
∂ F

F
S

where V is the design variable vector, and []FST is a constant transformation matrix.
We can reformulate most data transfer algorithms and present them in a matrix form. Next section provides a

reformulation of the algorithm presented by Farhat, Lesoinne, and LeTallec16.

III. Discrete Data Transfer
The algorithm presented here is a derivative of the IIM algorithm and the algorithm presented in Farhat,

Lesoinne, and LeTallec16. The discrete data transfer process consists of three steps: 1) find the nearest source
element for every target point, 2) calculate the mapping coefficients for every target point and its corresponding
(nearest) source element, and 3) interpolate/inject from the source element to the corresponding target point. We can
use the results from steps 1-2 for multiple data transfer applications so long the topologies of the source and the
target meshes are unchanged.

The first step requires a spatial proximity search, which is
the most time-consuming part of the entire process. We must
first find a nearest source element to a target point (see Fig.
1). One way to accomplish this step is to project every target
point to every source element. This is an exhaustive search,
which has the complexity of)(2NO and is prohibitively
expensive. Samet19 presents several methods and data
structures suitable for the proximity search. We use the
alternative digital tree (ADT) method introduced by Bonet
and Peraire20, which is similar to an octree method. The ADT
method reduces the search complexity to))(log(NON , which
is far more efficient than the exhaustive search. After
application of ADT, we will have a handful of candidate
source elements for every target point.

For every target point and its candidate source elements,
we need to find a candidate point on the source element that
is the nearest to the target point. Then, we select the closest
candidate point and its corresponding element. In order to
accomplish this, we need to have a complete definition for
the source element shape. We use finite element basis
functions for this purpose. Using these functions, one can define element shape as:

∑

∑
=

=

i
i

i
iji

B

BrR

121

2121

),(where

,),(),(s
,

s
j

ξξ

ξξξξ
 (6)

The term s
jR represents source element shape, s

, jir are source element nodes, ξ1 and ξ2 are the element parametric
coordinates, and Bi are the element basis functions. Standard books on finite element analysis contain detailed
discussions on finite element basis functions and their properties. Figure 2 shows the basis functions for bar,
triangle, and quadrilateral elements.

target

source

target

source

Figure 1. Source and Target Meshes.

American Institute of Aeronautics and Astronautics

5

Figure 2: Elements and Basis Functions.

12212

1211

1 ξξξξ

ξξξ

−==

==

),(

),(

B
L
xB

321

21
3

213

2
2

212

1
1

211

1

AAAA
A
AB

A
AB

A
AB

T

T

T

T

++=

+−==

==

==

)(),(

),(

),(

ξξξξ

ξξξ

ξξξ

21214

21213

21212

21211

1

1
11

ξξξξ
ξξξξ

ξξξξ
ξξξξ

)(),(
),(

)(),(
))((),(

−=

=
−=

−−=

B
B
B
B

2-Sided Elements 3-Sided Elements 4-Sided Elements

x
L

A1 A2

A3
A1 A2

A3 ξ
1

ξ
2

ξ
1

ξ
2

As shown in Fig. 2, the nearest point on a source element to a target point has the minimum distance between the
two points. Equation 7 defines the distance from a target point (

kR) to any point on the source element (j) as a
function of the source element parameters:

 ∑−=
i

kk
iji

kk BrRd k),(),(s
, 2121

2 ξξξξ (7)

The nearest location on the source element to the target point can be determined by finding the minimum distance:

()

()

() 00

00

2

21
21

2

2
1

21
21

1

2

21
2

21

=
∂

∂
•−⇒=

∂
∂

=
∂

∂
•−⇒=

∂
∂

∑∑

∑∑

]),([]),([

]),([]),([

),(

s
,

s
,

s
,

s
,

,

i
k

kk
i

ji
i

kk
ijikk

i
k

kk
i

ji
i

kk
ijik

kk

BrBrRd

BrBrRd

dMin

k

kk

ξ
ξξξξ

ξ

ξ
ξξξξ

ξ

ξξ
ξξ (8)

For bar and triangular elements, Eq. (8) results in a system of linear equations. For quadrilateral elements, Eq. (8)
results in a system of quasi-linear equations, and we use a damped Newton-Raphson technique to solve them. For
example, Eq. (8) can be rewritten for a triangular element (B1 = ξ1, B2 = ξ2, and, B3 = 1 - ξ1 - ξ2) as:

)()()()()()(

)()()()()()(

,,,,,,,,,,,

,,,,,,,,,,,

s
j

s
j

s
j

ks
j

s
j

s
j

s
j

ks
j

s
j

s
j

s
j

s
j

s
j

s
j

ks
j

s
j

s
j

s
j

ks
j

s
j

s
j

s
j

rrrRrrrrrrrr

rrrRrrrrrrrr

k

k

3232323213231

3132313213131

−•−=−•−+−•−

−•−=−•−+−•−

ξξ

ξξ (9)

where rs
i,j are the nodes of source element j. Solving this linear system results in k

1ξ and k2ξ , which are the
parametric coordinates of a point nearest to the target point k on the source element j. This concludes the second step
in our process.

We have now sufficient information to transfer scalar or vector data using the source element definition as

 ∑=
i

kk
ii

kk Bffk),(),(s
2121

ξξξξ (10)

where s
if is the data defined on the source element, and

kf is the interpolated data for point k on the target mesh. We
can represent Eq. (10) in a matrix form as

 [] ∑ ===
i

ki
kk

ikiTS TBTFTFT 1
21
),,(where]][[S ξξ (11)

American Institute of Aeronautics and Astronautics

6

For example,
SF could represent the temperature distribution on a CFD mesh, and

TF would be the resulting
interpolated temperature distribution on a CSM mesh.

This algorithm could be easily adapted for an aeroelastic analysis, where the aeroelastic deflection is transferred
from a CSM mesh to a CFD mesh and aerodynamic loads from a CFD mesh to a CSM mesh. To interpolate the
aeroelastic deflection from a CSM mesh to a CFD mesh, we can rewrite Eq. (11) as:

]][[][CSMCSMCFDCFD T δδ −= (12)

where
CFDδ and

CSMδ are the aeroelastic deflections on the CFD and the CSM meshes, respectively. There are two
approaches to transfer CFD loads to a CSM mesh: 1) interpolate pressure onto the CSM mesh and integrate the
pressure on the CSM mesh, and 2) integrate pressure on the CFD mesh and then transfer the resulting load vectors
onto the CSM mesh. The latter approach guarantees conservation of forces and moments, but not the former
approach. We use virtual work to transfer the aerodynamic loads to CSM mesh. The virtual work, product of force
and deflection, on the CSM mesh (UCSM)) must be equal to the virtual work on the CFD mesh (UCFD) as

CFDCSM

CFDCSMCSM , ,

δδ

δδ

TT

CFDCSM

T
CFD

T

CFDCSM

CFDCSM

FF

UU

FUFU

=

=

==
 (13)

Substituting Eq. (12) into Eq. (13) and rearranging terms result in:

][][][

]][[][

]][][[]][[CSM

CFD
T

CSMCFDCSM

CSMCFD
TT

CSMCSMCFD
TT

FTF

TFF

TFF

CFDCSM

CFDCSM

−

−

−

=

=

= δδ
 (14)

Equation (14) satisfies the reciprocity relation, which allows us to use the same transformation matrix to transfer
deflections and loads as

 []
[]][][

]][[

CFD
T

CSMCFDCSM

CSMCSMCFDCFD

FTF

T

−

−

=

= δδ (15)

In addition to the virtual work, Eq. (15) satisfies conservation of forces as:

[] []

∑

∑∑ ∑

∑∑

∑

∑∑

=

==

=

=

=

−−

−

−

k

CFD
k

ik i

CFD
k

i k

CFD
k

i

CFDT
i

CSM
i

k

CFD
k

F

TTF

FT

FT

FF

1CSMCFD
ki

CSMCFD
ki

CSMCFD
ik

CSMCFD

,

 (16)

Therefore, we have proven that Eq. (15) maintains virtual work and conservation of forces. Next, we will look at
conservation of moments. Although the source and target meshes are created from the same geometry model, there
still exists a gap between the two meshes due to different levels of mesh discretization. This gap creates a moment
deficit (CSMM∆), which needs to be taken into account. The conservation of moments requires that the moments on
CSM and CFD meshes to be equal as:

American Institute of Aeronautics and Astronautics

7

 { }∑∑ ∆+×=×
k

CSM
k

CSM
k

CSM
k

i

CFD
i

CFD
i MFrFr (17)

We can expand this equation as:

[] []() [] []

{ }

∑ ∑∑∑ ∑

∑∑ ∑

∑∑∑∑∑

∆+×=∆+×








=

∆+








×=

∆+×=∆+×=×

−

−

−−

i k

CSM
k

CFD
i

CFD
i

k

CSM
k

i

CFD
i

k

CSM
k

k

CSM
k

k i

CFD
i

CSM
k

k

CSM
k

k

CFDTCSM
k

k

CSM
k

k

CFDTCSM
k

i

CFD
i

CFD
i

MFpMFrT

MFrT

MFTrMFTrFr

CSMCFD
ik

CSMCFD
ik

CSMCFDCSMCFD

 (18)

where CFD
ip is the projection of CFD mesh points (CFD

ir) onto the CSM mesh. As a result,

∑

∑∑
∆=

×−=∆

i

CFD
i

i

CFD
i

CFD
i

CFD
i

k

CSM
k

M

FprM)(
 (19)

The term)(CFD
i

CFD
i pr − represents the gap between the two meshes. We use the load transformation matrix to

transfer nodal CFD moment deficits (CFD
iM∆) to CSM mesh (CSM

kM∆) as:

 [] [] []CFDTCSM MTM ∆=∆ −CSMCFD (20)

This process maintains conservation of moments. In the next section, we present results for several cases.

IV. Results
The author has implemented the algorithm described in the previous section in a C++ computer program, and this
program is available for distribution within the United States. We have applied the algorithm to a set of test cases,
and Table 1 shows a summary of these results. We ran all test cases on a 3 GHz PC running Linux operating system.
The conservation of forces and moments were satisfied within machine accuracy (10-12) for all load transfer cases. It
took less than ten seconds for a typical test case.

Table 1. Algorithm Performance

Test Cases # of Points # of Elements # of Points # of Elements CPU Time (s)
1) MicroAirVehicle(Aero to FEM) 30656 60832 929 872 6.356
2) X43 (FEM to Aero) 986 1799 1776 3548 0.576
3a) X33 (Aero to Aero) 22987 22680 69051 137357 62.33
3b) X43 (Aero to FEM) 1776 3548 986 1799 0.48
4a) Ballute (Aero to FEM) 7151 8278 9904 17352 4.18
4b) Ballute (Aero to FEM) 9904 17352 7151 8278 3.42
4c) Ballute (Aero to FEM) 37144 69408 7151 8278 8.396
4d) Ballute (Aero to FEM) 143680 277632 7151 8278 29.12
4e) Ballute (Aero to FEM) 564948 1110528 7151 8278 113.5
5) Morphing Wing (Aero to FEM) 5700 5280 65 62 0.908
6) Mode Shape (FEM to Aero) 443 404 6201 6032 0.86
7) BWB (FEM 2 Aero) 38532 574324 18404 17472 17.621

Source Target

American Institute of Aeronautics and Astronautics

8

The algorithm performance depends on the mesh sizes
(number of points and elements for the source and target
meshes), element definitions, discrepancies in mesh
resolutions, gaps between two meshes, and a number of other
factors. However, the performance approximately varies with
the average of number of points for the source (nps) and target
(npt) meshes. Figure 3 shows the algorithm performance (CPU
time) versus average number of points. The dots represent the
actual performance, and the line is the least-squares
approximation of CPU time. One of the data points, shown as
solid dot in Fig. 3, requires a larger CPU time due to the
element definition and the shape. The results indicate that the
performance generally scales linearly with the average number
of points.

The algorithm accuracy depends on the mesh resolution
and the gaps between source and target meshes. The algorithm guarantees the load transfer accuracy, and our test
results validated this fact. The algorithm maintains conservation of forces and moments within the machine accuracy
(~10-12). We used a ballute (a combination of balloon and parachute used to decelerate a planetary vehicle) model to
demonstrate the interpolation accuracy. We started with a coarse mesh on a ballute (Fig. 4a) with the sinusoidal
function (Fig. 4b) superimposed on the entire surface as:

)cos()sin()sin(),,(
400400800

800
1

zyxzyxf −
= (21)

We refined the coarse mesh by splitting each element to create our source mesh and function. We then used the
coarse mesh (target) to interpolate function (f2) from the fine (source) mesh. Figure 4c shows contours for source
and resulting target meshes. If the process were error free, then (f1) and (f2) should be identical. The average
difference between (f1) and (f2) was 6.5x10-17, which is well below our machine accuracy.

Figure 4: Interpolation Accuracy

Figure 3. Performance Summary

0 0.5 1 1.5 2 2.5 3

x 10
5

0

20

40

60

80

100

120

C
P

U
 T

im
e

(S
ec

on
d)

X = (nps + npt) / 2

Data Transfer Performance

Estimated CPU Time = 4.06 + 3.98x10−4X
Actual CPU Time

American Institute of Aeronautics and Astronautics

9

The second test case is the aerodynamic load transfer from a CFD mesh to a FE mesh for a Micro Air Vehicle.
Figure 5 shows: (a) CFD source mesh, (b) contours of coefficients of pressure on the source mesh, (c) aerodynamic
load vectors on the CFD mesh, (d) target CSM mesh, and (e) the transferred load vectors on the target CSM mesh.
The force vector distributions on the CSM and the CFD meshes are different due to different levels of discretization;
however, the transfer process conserved forces, moments, and virtual work within the limits of the computer
accuracy. It took 6.36 seconds of CPU time to run this case.

The third test case is the interpolation of axial moment from a structured mesh to an unstructured mesh for an X33
model. Figure 6 shows: (a) the source structured mesh, (b) axial moment contours for the source mesh, (c) target
mesh, and (d) contours of source and interpolated target axial moment. Figure 6d shows that the original source
contours (solid blue lines) and interpolated target contour lines (red dashed lines). Both contour lines lie right on top
of each other. It took 62.33 seconds of CPU time to run this case.

Figure 5. Load Transfer for a Micro Vehicle

Figure 6. Pressure Interpolation on an X33.

American Institute of Aeronautics and Astronautics

10

The fourth test case is the load transfer for a morphing configuration. Figure 7 shows: (a) CFD mesh, (b) coefficients
of pressure on the CFD mesh, (c) load vectors on the CFD mesh, (d) a simple mesh for multibody dynamics analysis
(colors signify different zones), and (e) transferred load vectors on the target mesh. For clarity, the moment
distribution is not shown in Fig. 7. As with the all other load transfer test cases, the process conserved forces,
moments, and virtual work within the limits of the computer accuracy. It took 0.91 second of CPU time to run this
case.

The fifth test case is the deflection transfer for a blended wing body. Figure 8 shows: (a) undeflected and deflected
FE meshes, (b) undeflected and deflected CFD meshes, (c) close-up view of deflected FE and CFD meshes. The
transfer included all three components of the deflection vectors. The deflected CFD model is right on the deflected
FE mesh. It took 17.62 seconds of CPU time to run this case.

Figure 7. Load Transfer for a Morphing Vehicle.

Figure 8. Deflection Transfer for a Blended Wing

American Institute of Aeronautics and Astronautics

11

The sixth and final test case is the aerodynamic load transfer for a ballute. Figure 9 shows: (a) CFD source mesh, (b)
contours of coefficients of pressure on the source mesh, (c) target CSM mesh, and (d) the transferred load vectors on
the target CSM mesh. The conservation of forces, moments, and virtual work were maintained within the limits of
the computer accuracy. It took 4.18 seconds of CPU time to run this case.

V. Conclusions
We have presented an algorithm for data transfer between dissimilar meshes. The algorithm is suitable for high-

fidelity multidisciplinary applications, where scalar or vector fields need to be transferred among various discipline.
The paper includes a formulation for modeling fluid-structure interaction, and the formulation guarantees
conservation of force and moments. The overall formulation is in a matrix form, which simplifies the algorithm
integration with existing commercial software. The implementation is independent of the mesh topology, so we can
treat structured and unstructured meshes in the same manner. The implementation also includes an advanced spatial
search algorithm that substantially reduces the required computational resources.

We verified the algorithm accuracy through six test cases. The results for load transfer cases demonstrated that

the algorithm maintained conservation of forces and moments. The test cases also verified the interpolation
accuracy. The algorithm performance depends on the mesh sizes, element definitions, discrepancies in mesh
resolutions, gaps between two meshes, and a number of other factors. However, the performance approximately
varied linearly with the average of number of mesh points. It took less than ten seconds for a typical test case.

Acknowledgments
The author would like to thank Drs. Kumar Bhatia and Moeljo Hong of Boeing (Seattle) for a very productive

collaboration during the past few years, and their hospitality and generosity during author’s visits to Boeing. The
author would also like to thank following NASA Langley Researchers: Paul Pao and Mercedes Reeves for providing

Figure 9. Load Transfer for a Ballute

American Institute of Aeronautics and Astronautics

12

micro air vehicle data, Sasan Armand for providing the data for ballute, Karen Bibb for providing the X33 data, and
Pawel Chwalowski for providing data for the morphing aircraft.

References
1Samareh, J. A., Bhatia, K. G., “A Unified Approach to Modeling Multidisciplinary Interactions,” 8th

AIAA/NASA/USAF/ISSMO Multidisciplinary Analysis and Optimization Conference, Multidisciplinary Analysis and
Optimization, Long Beach, CA, 6-8 September 2000, AIAA Paper 2000-4704.

2Dusto, A. R., “A Method for Predicting the Stability Characteristics of an Elastic Airplane, FLEXSTAB Theoretical
Description,” NASA CR-114,712, Oct. 1974.

3Petiau, C. and Brun, S., “Trends in Aeroelastic Analysis of Combat Aircraft,” AGARD, AD-P005855, Aug. 1987.
4Nicot, Ph., and Petiau, C., “Aeroelastic Analysis Using Finite Element Models,” European Forum for Aeroelasticity and

Structural Dynamics,” Aachen, Germany, 1989.
5Tzong, G., Chen, H. H., Chang, K. C., Wu, T., and Cebeci, T., “A General Method for Calculating Aero-Structure

Interaction on Aircraft Configurations,” AIAA Paper 96-3982, Sept. 1996.
6Kapania, R. K., and Bhardwaj, M., “Aeroelastic Analysis of Modern Complex Wings,” AIAA Paper 96-4011, Sept. 1996.
7Brown, S. A., “Displacement Extrapolations for CFD+CSM Aeroelastic Analysis,” AIAA Paper 97-1090, Apr. 1997.
8 Cebral, J. R., and Löhner, R., “Fluid-Structure Coupling: Extensions and Improvements,” AIAA Paper 97-0858, Jan. 1997.
9Smith, M. J., Hodges, D. H., and Cesnik, C. E. S., “An Evaluation of Computational Algorithms to Interface Between CFD

and CSD Methodologies,” Wright-Patterson Laboratory, WL-TR-96-3055, Nov. 1995.
10Clutter, E. G., “A NURBS Based Interface Definition for Fluid-Structure Interactions Studies,” Master’s thesis, Department

of Aerospace Engineering, Mississippi State University, Mississippi, Dec. 1997.
11Send, Wolfgang, “Coupling of Fluid and Structure for Transport Aircraft Wings,” International Forum on Aeroelasticity

and Structural Dynamics, CEAS/AIAA/ICASE/NASA Langley, Williamsburg, VA, June, 1999. (Not included in the bounded
volume)

12Samareh, J. A., “Use Of CAD Geometry in MDO,” The 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, AIAA-96-3991, Bellevue, WA, Sept. 1996, pp. 88–98.

13Murti, V., and Vallippan, S., "Numerical Inverse Isoparametric Mapping in Remeshing and Nodal Quantity Contouring,"
Computers and Structures, Vol. 22, No. 6, 1986, pp. 1011-1021.

14Pidaparti, R. M. V., "Structural and Aerodynamic Data Transformation Using Inverse Isoparametric Mapping,” Journal of
Aircraft, Vol. 29, No. 3, 1992, pp. 507-509.

15Maman, N., and Farhat, C., “Matching Fluid and Structure Meshes for Aeroelastic Computations: A Parallel Approach,”
Computers and Structures, Vol. 54, No. 4, 1995, pp. 779–785.

16Farhat, C., Lesoinne, M., and LeTallec, P., “Load and Motion Transfer Algorithms for Fluid/Structure Interaction Problems
with Non-Matching Discrete Interface: Momentum and Energy Conservation, Optimal Discretization and Application to
Aeroelasticity,” Computer Methods and Applied Mechanical Engineering, Vol. 157, No. 1, 1998, pp. 95–114.

17Cebral, J. R., and Löhner, R., “Conservative Load Projection and Tracking for Fluid-Structure Problems,” AIAA Journal,
Vol. 34, No. 4, 1997, pp. 68-692.

18Cook, R. D., Malkus, D. S., and Plesha, M. E., Concepts and Applications of Finite Element Analysis, 3rd ed., John Wiley
& Sons, New York, 1989.

19Samet, H., The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.
20Bonet, J. and Peraire, J., "An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection

problems," Int. J. Numer. Meth. Engng, vol. 31, pp. 1-17, 1991.

